A sequence of numbers(快速求幂)

题目描述

Xinlv wrote some sequences on the paper a long time ago, they might be arithmetic or geometric sequences. The numbers are not very clear now, and only the first three numbers of each sequence are recognizable. Xinlv wants to know some numbers in these sequences, and he needs your help.

输入要求

The first line contains an integer N, indicting that there are N sequences. Each of the following N lines contain four integers. The first three indicating the first three numbers of the sequence, and the last one is K, indicating that we want to know the K-th numbers of the sequence.
You can assume 0 < K <= 10^9, and the other three numbers are in the range [0, 2^63). All the numbers of the sequences are integers. And the sequences are non-decreasing.

输出要求

Output one line for each test case, that is, the K-th number module (%) 200907.

假如输入

2
1 2 3 5
1 2 4 5

应当输出

5
16

题目大意很简单,就是给你一个序列的前三项,该序列不是等差就是等比,让你求第K项余200907,求等比时用到快速求幂,不用的话应该会TLE,下面介绍快速求幂:

快速求幂实现代码为

1
2
3
4
5
6
7
8
9
10
11
int fastpow(int a,int b) 
{
int r=1,base=a;
while(b!=0)
{
if(b&1) r*=base;
base*=base;
b>>=1;
}
return r;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include<iostream>
#include<algorithm>
#include <vector>
#include<string.h>
#include<string>
#include <cstring>
#include<ctype.h>
#include<math.h>
#include <queue>
#include<map>
using namespace std;
int MOD=200907;
long long fastpow(long long q,long long n)
{
long long r=1;
while(n)
{
if(n&amp;1)
r=r%MOD*(q%MOD)%MOD;
q=q%MOD*(q%MOD)%MOD;
n>>=1;
}
return r;
}
void solve();
int main()
{
solve();
return 0;
}
void solve()
{
long long t,a1,a2,a3,n,d,ans,q;
cin>>t;
while(t--)
{
cin>>a1>>a2>>a3>>n;
if(a2*2==a1+a3)
{
d=a2-a1;
ans=(a1+(n-1)*d%MOD)%MOD;
}
else
{
q=a2/a1;
ans=a1*fastpow(q,n-1)%MOD;
}
cout<<ans<<endl;
}
}

打个小广告

欢迎加入我的知识星球「基你太美」,我会在星球中分享 AucFrame 框架、大厂面经、AndroidUtilCode 更详尽的说明…一切我所了解的知识,你可以通过支付进入我的星球「基你太美」进行体验,加入后优先观看星球中精华的部分,如果觉得星球的内容对自身没有收益,你可以自行申请退款退出星球,也没必要加我好友;如果你已确定要留在我的星球,可以通过扫描如下二维码(备注:基你太美+你的星球昵称)加我个人微信,方便我后续拉你进群(PS:进得越早价格越便宜)。

我的二维码